

Chemical Fingerprinting Program for RSRM Critical Materials

Presented by:

William H. McClennen Dennis J. Fife Michael O. Killpack Rick P. Golde

September 16-18, 2002

THIOKOL PROPULSION

Presentation Outline

- Background
- Objectives and Approach
- Accomplishments
 - Description of Database Viewer
 - Success Stories
 - Direct and Additional Benefits
- Continuing Challenges
- Acknowledgements

Reusable Solid Rocket Motor (RSRM) Components Involving Critical Materials

- Segmented steel case
- Movable nozzle
- Case-bonded, composite solid propellant
- Elastomeric internal insulation
- Nozzle ablative liner
- Nozzle insulator and structural shell
- Clean bonding surfaces
- Effective adhesives

Background: Chemical Fingerprint Definition

Diagnostic Combination of Analytical Methods for Detailed Characterization of a Material

- Key importance is a chemical fingerprint that can be used to identify a material, to differentiate it from similar looking materials, or lead to its source
- In the past, fingerprinting methods were used to characterize materials and processes
 - Following a failure or noncompliance
 - Ad hoc, reactive, and incomplete generation and storage of data
 - Database scattered over dozens of file cabinets
 - Few techniques were adopted for receiving inspection/process control

Objectives of Chemical Fingerprinting (Recognize, Reduce, Resolve Problems)

- Detailed understanding of material composition
- Enhanced ability to detect changes in a material due to vendor changes or subtier supplier changes
 - Improved acceptance testing based on chemical composition
- Improved understanding of how a material works, ages, degrades, etc.
- Standardized approach to material fingerprinting
- Develop methods for monitoring all key ingredients
- Develop a comprehensive material database
- Reduced probability of unexpected and unrecognized changes to critical materials and processes

Approach: State of Art Facilities

- **Chemical Characterization**
 - NMR (300 and 400 MHz)
 - Surface analysis
 - **ESCA/XPS**
 - Auger
 - SIMS
 - ISS
 - RAMAN / FTIR / NIR
 - Metals analysis
 - ICP emission
 - AA/GFAA
 - ICP-MS
 - X-Ray Fluorescence
 - Chromatography
 HPLC/HPLC-MS

 - GPC
 - GC (various detectors)
 - GC-MS
 - Ion chromatography
 - Flow injection auto analyzer
 - CHN O/S
 - Classical techniques
 - Asbestos identification
- **Thermal Analysis**
- **Mechanical Properties**
- **Non Destructive Analysis**

Approach: Material Team

Team Members

Material Specialist

M&P Specialist

Design Engineer

Procurement Quality Engineer

Manufacturing Engineer

Process Control Lab

R&D Analytical Laboratories

R&D Materials and Process

S&E Engineering

Quality

Operations

Quality Lab (material receipt)

Material Fingerprinting Approach

Data Management

Fingerprinting Data Manipulation and Storage

Database Components and Software (No Commercially Available Integrated System: Integration and Data Parsing Developed Internally)

- Server-based PC Network: Novell®
- Data loader and Viewer: developed software programs internally using PowerBuilder®
- Oracle® database
- LIMS (Lab Information Management System) software: Nautilus® R2B2, LabSystems
- Spectroscopic/
 Chromatographic Data Viewer:
 Grams/32® v. 7.0, LabSystems,
 Galactic Industries

Ion Chromatography Analysis

Accomplishments: RSRM Fingerprinting Materials

- 55 Materials completed or in process
 - 11 Solvents or cleaning solutions
 - Phenolic resin and 3 phenolic composites
 - 4 Compounded rubber insulations
 - 2 Propellant systems
 - 10 Polymeric components
 - 3 Sealants and ablative compounds
 - 5 Rubber adhesives
 - 3 Epoxy based adhesives
 - 5 Paints and primers
 - 7 Inorganic fillers, abrasives and reactive components
 - 1 Corrosion inhibiting grease

Accomplishments: Database Viewer Features

- Executive view
 - Material overview, reference documents, data examples
- Method information
 - Chemical characterization methods
- Component information
 - Trend analysis and visualization of key analytes
- Method quality control
 - Trend analysis of QC parameters
- View comparison
 - Direct graphical overlay of raw spectroscopic and chromatographic data
- Lab notes

Material Fingerprinting Success Example

- Neoprene FB
 - Secondary polymer used as a component in case insulation EPDM formulations
 - Material no longer produced
 - Fingerprinting showed that under proper storage conditions: Neoprene FB could be stored over 10 years and still meet specification
 - Storage at 40°F, low humidity, and minimal light
 - Stockpiled 100,000 lb till new EPDM formulation can be qualified
 - Test methods developed to ensure material is well within specification
 - Viscosity measurement performed as a check at the vendor's storage site, while the GPC and FTIR analyses confirm the molecular weight distribution and the chemical composition
 - Defense program experienced solvating problem with gum stock for carbon fiber EPDM
 - Fingerprinting knowledge allowed immediate identification of the problem
 - Corrective action given on controlling Neoprene FB

Presentation Module: Executive Screen for Neoprene FB

e\$q\(\)	- -	zlx. tinac_senti_zv_w sb. gnige_energes stx. fnoqud_satistz_pnigA_energes stx302_bielitycord_energes cob. norietresert_BT_energes	noilsmoint sonsiele A	
	SOR ST DEC	AMT AITA OLAH O98	Herence Data	
	5/5% 50 5/5% 50 5/5% 7 5/5% 2 5/5% 2 5/5% 66 Siun Priev	4s (double dick for structure) THALENES HIURAM DISULFIDE THYLHIURAM DISULFIDE THYLHIURAM DISULFIDE	CHLORO1.34 CHLORONAPH CHOROnents SULFUR TETRAETHYLT OIMETHYLDIE	
cieled:	B is a low molecular weight EPDM formulations to control plast ne flame retardant capabilities asson is thal use Neoprene FB are as folk ystems tunnel floorplate shear ply, L		Material polychloroprene lomulations and polychloroprene land to enhance land the Machren Silica filled EPDW	
mbers Report	Personnel Stock Nu	ebesU Vage	Material Mame Trens rece o Stock #	
	comparisons Lab Motebook	optense) Component Info Method QC View C	Malenial Fingerphining for Ne Executive View Method Infomation	

Material Example: Neoprene FB in EPDM

EPDM Usage in Booster Motor

Method Information Screen

:	Material Account # 10378		sisel ynamiq ene smeji belrigiirig	
	,			
	1			
	•			
			•	
		•		
		•	,	· · · · · · · · · · · · · · · · · · ·
, aT	zizylenA pirtemevergomied T	TG_F1600	LTP-33H1-1156-FP1600	sizylenA pinemiveta le
RMN	Nuclear Magnetic Resonance	MMR_F0800_H	LTP-33H1-1079-FP0800	Proton) sizylenA
HMN	Nuclear Magnetic Resonance	NMH_F0800_C13	LTP-33H1-1079-FP0800	Analysis (Carbon-13)
TM	zizylenA zleteM	וכפ_דומסו	LTP-33H1-1102-FP1001	ene - ICP AES Analysis
WE	Mechanical Testing	FDS_F2000	LTP-33H3-1100-FP2000	SOH - ene
WE	Mechanical Testing	WE_F2100	LTP-33H1-1101-FP2100	ene - Brooklield Viscosity
רכ	ydqeagolsmord2 biupiJ	LC_F0100	LTP-33H2-1136-FP0100	SJAH yd sisylenA - ene
비	lnirared Spectroscopy	フ <u>ϼ_</u> 00701_ 用 ITŦ	LTP-33H2-1069-FP0700	eiegmoD vjileuD - sisvlenA
HI	vgoosotosed barathri	PTIR_F0700	LTP-33H2-1069-FP0700	zizylenk
249	Gel Permestion Chromatography	00607_ᲔฯᲔ	LTP-33H2-1099-FP0300	sizyl sn A J92 - 87 ana
DSC	Miterential Scanning Calorim	DSC_F1500	LTP-33H1-1176-FP1500	nalysis - Low Temperature Scan
UA	issylenA oluA	CHN_F1800	LTP-33H1-1030-FP1800	zizylsnA letnemel 3 N bn
Dept. Apbr.	Dept. Name	<u>[sə]</u>	<u>Method Ref.</u>	apidio

Component Info: Analyte Trends

Method QC: Duplicate GPC Analysis Trends

View Comparison: FTIR Data

Analysis Details: FTIR Spectra From Aging Study

- HC polymer, carboxy terminated polybutadiene (CTPB)
 - This liquid polymer is used in the liner that bonds the propellant to the case insulation.
 - Understanding the details of the polymer and the manufacturing process enabled analysts to identify a noxious byproduct at increased levels that was making operators sick.
 - The bad lot was taken out of production and a corrective action was developed to improve the vendor's manufacturing process.
 - A detection and quantification method with new limits for the byproduct is in place for acceptance of future lots.
 - In-depth fingerprinting knowledge has also been invaluable for the development of the replacement after current vendor announced the closure of their HC polymer plant.
 - Initial carboxy terminated polybutadiene (CTPB) received from a new vendor showed distinct differences from HC polymer in small acids and molecular weights.
 - Recommendations to improve reaction mixture ratios as well as process washing and drying have enabled new vendor to produce acceptable polymer, now being tested for use on RSRM.
 - Also developing acceptance testing and spec limits for both commercial and defense programs with this new material.

- BRULIN 1990 GD-T
 - ODC replacement for methyl chloroform vapor degreasing
 - Water-based solvent used with spray-in-air technology
 - Several issues developed with material during certification
 - Material received with insoluble material in drums
 - Material received with lower than expected pH
 - Vendor asked for site visit from Thiokol's chemist
 - Knowledge from fingerprinting provided information to stabilize product through small changes in use of de-ionized water, mixing steps, and cycles
 - Use of hydrated silicates
 - Recommendation for KOH add back to spray-in-air baths
 - Increased useable bath life from 8 to 90 days
 - Knowledge from fingerprinting effort provided suggestion for corrosion inhibitor rinse cycle (new inhibitor currently qualified)

- MAPO (Methyl Aziridinyl Phosphine Oxide)
 - Used as a curative for the liner between insulation and propellant
 - Recent Lot received with incomplete certification
 - Acceptance testing indicated material was out of specification for reactive imine, hydrolyzable chloride and total chloride
 - Additional tests were done per the fingerprinting SLP that supported the previous testing and included GPC data that began to suggest the nature of the problem
 - Further testing using more detailed techniques (HPLC/MS)
 developed through fingerprinting in R&D Labs identified the process
 by-product impurities and aided vendor in finding a resolution
 - Material returned to vendor for reprocessing

- TCA Methyl Chloroform
 - Ozone Depleting Chemical (ODC) TCA has limited availability due to restrictions for defined essential use.
 - A large amount of stored TCA had exceeded its shelf life and deteriorated out of specification.
 - Distillation was proposed as a recovery technique, but there was uncertainty on its effects on the stabilization components.
 - Fingerprinting analyses were able to prove the distilled material acceptable to NASA.
 - Basic understanding has also identified problems with long-term storage of the TCA from a second source due to incompatibility between two components in its stabilizer package.
 - Currently working with vendor, design and manufacturing engineers to assess new methods for storage to ensure this critical solvent will be available until a replacement solvent can be qualified or, if necessary, for the life of the RSRM program.

- Corrosion inhibiting grease from new plant verified with FTIR
 - Vendor tried a new formulation but reverted to original catalyst after fingerprinting confirmed it gave most consistent result
- D-limonene containing solvents removed from use on uncured rubber after testing confirms degradation of cure system
- BHT identified as a minor additive to inhibit d-limonene degradation in solvents
- Detailed fingerprinting of rubber to metal adhesives has provided new insight into aging processes plus new ways to monitor aging
 - Aging studies indicate resin interaction as early step in degradation
 - Significant reduction in shelf life with certain environments
 - New methods provide early warning of potential problems

Direct Benefits of Fingerprinting

- Fundamental understanding of critical materials that often equals or exceeds vendor's knowledge
 - Provide baseline chemical profile of materials in use
 - Material changes can often be traced to their source
- Standardized approach including:
 - Material team for focus and relevance
 - Flexible test plan for method adaptation or development
 - Laboratory team for technical expertise
 - Final report and R&D procedures to document method development
 - SLP of key down-selected robust methods in standard format for routine use in Process Control Lab
- Material team technical ownership
 - Analytical chemist as material specialist
 - Improved communication between procurement, work centers, quality and labs

Additional Benefits of Fingerprinting

- Versatile database broadly available both for new lot comparison and problem solving
 - Available plant-wide and informative on many levels of detail
 - Trending of key parameters and QC data as well as detailed overlay
 - Lot-to-lot consistency monitored and changes flagged
 - Security functions provide protection for vendor proprietary information
- Improved vendor relationships through data and method sharing
 - New methods shared with vendors to enhance their capabilities
 - Vendors acknowledge our expertise and expand cooperation by timely reporting of planned changes
- Greater efficiency and confidence in requalification/ qualification of materials due to obsolescence or changes in vendor or production site

Continuing Challenges

- Down selection for Process Control Lab
 - Basic chemical characterization
 - Methods robust and simple enough for routine analysis
 - Key component information what is likely to go wrong next
 - History of materials and vendors
 - Dependable crystal ball
- Implementation in Process Control Lab
 - Training at higher level of technical expertise
 - Greater demands on LIMS and data entry
 - Setting limits for new acceptance criteria
- Data utilization
 - Continuing education of vendors and engineers

Acknowledgements

- Vision of NASA/MSFC and Thiokol management to see the benefits of a formal Fingerprinting Program
- NASA funding through Marshall Space Flight Center
- Data sharing cooperation of material vendors
- Analytical efforts of Thiokol material specialists, scientists, and engineers

